Improve forecasting algorithm for building consumption to include EV demand
The goal of decarbonizing our energy, calls for the integration of more renewable energy in our energy system. On-site energy generation is becoming more and more the norm for the Dutch buildings. The stochastic nature of renewable energy sources and the limitations of the grid, forces designers to look into demand side management and optimization of energy consumption. To optimize the consumption of the buildings, predicting their energy demand beforehand is valuable.
General project problem description
The project is a collaboration with Kropman building services company. Kropman has been one of the leading forces in the Dutch construction industry towards energy transition and has created a living lab to develop, test, validate and implement new technologies and processes.
The living lab includes on site energy generation through PVs and energy storage through electric batteries. An intelligent building management system is in place that monitors different aspects of the building. A forecasting algorithm is already available to predict building consumption for the next day, but the EV demand is not included.
The student will work on a dataset from Kropman office Breda and use the existing model as a base case to develop a solution which outperform the existing forecast and includes the EV demand.